Final Exam — Advanced Algebraic Structures (WBMA16000)
Wednesday January 29, 2019, 15:00h—18.00h

University of Groningen

Instructions

1. Write your name and student number on every page you hand in.
2. All answers need to be accompanied with an explanation or a calculation.
3. You may use results obtained in homework or tutorial problems.

4. In total you can obtain at most 90 points on this exam. Your final grade is (P + 10)/10,
where P < 90 is the number of points you obtain on the exam.

Problem 1 (545 points) (Module Homomorphisms)

(a) Show that Homgz(Q,Z) is trivial.

[[Solution. Let f: Q — Z be a Z-module homomorphism. Let z € Q\ {0}. Then, for every
a € Z\ {0}, we have

a-f(x/a) = f(x) € Z,
and since f(x/a) € Z, we find that f(z) is divisible by every integer, hence must be 0.]]

(b) Let R be a commutative ring and let n > 1 be an integer. Show that Homg(R", R) = R".

[[ Solution: One way to get started is to first define a map ¢,: R" — R for every z =
(z1,...,2,) € R", which sends y = (y1,...,yn) € R" to p,(y) = >, ;y;.) Show that

(i) g is linear

(il) ¥(x) = ¢, is linear

(i)
(iv)

One can also show that f € Hompg(R", R) is given by its effect on a fixed basis of R". ||

¥ is injective

U is surjective.

Problem 2 (5444-6-+5 points) (Tensor products)

(a) Find a nontrivial Z-module M such that M ®z; M = M and M % Z. [[Solution: For
M =Z/nZ, with n > 1, we have M ®; M = Z/dZ, where d = ged(n,n) = n.)]

(b) Let R be a commutative ring, let I be an ideal of R and let M be an R-module. Then

IM = {Zaimi:nz 0,a; € I,m; € M for allz}

=1
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(c)

(d)

is a submodule of M (you do not need to prove this). Show that there is a unique R-
module-homomorphism

fr(R/I)®@r M — M/IM
such that f((r+1)®@m) = (rm)+IM forallr+1 € R/I and m € M.

[[ Solution: This follows immediately from the universal property of the tensor product. ||
Show that f in (b) is an isomorphism. (Hint: Find the inverse function.)
[[ Solution: The inverse map is
gm+IM)=>1+1)@m

. Need to show

(a) g is well-defined

(b) fog=id

(c) gof=id
I

Find an example of a commutative ring R, an ideal I of R and an R-module M such that
I ®r M % IM.

[Solution: Take R = Z,I = nZ,M = Z/nZ, where n > 2. Then IM = {0}, but
T ®p M= M.

Problem 3 (54446 points) (Projective modules)

(a)

Let n > 1 be an integer. Show that the Z-module Z/nZ is not projective.

[Solution: First method: A Z-module M is projective iff there is a free Z-module F' and
a Z-module @ such that FF = M @ P. But Z/nZ has nontrivial elements of finite order,
whereas a free module does not. Second method: Let 7w: Z — Z/nZ be the canonical
surjection and let h: Z/nZ — 7Z/nZ be the identity. If Z/nZ were projective, there would
be a homomorphism h: Z/nZ — Z such that h = woh. But all homomorphisms Z/nZ — Z
are trivial.

Deduce that a finitely generated Z-module is projective if and only if it’s free.

[[ Solution: Free = projective was shown in the lectures. By the structure theorem for
finitely generated abelian groups, such a Z-module M is not free if and only if M =
N & Z/nZ for some submodule N of M and n > 1. Since Z/nZ is not projective, neither
is M, using the characterization in the first method above.]]

Let p be a prime, let n > 1 be an integer and let R be the ring Z/p"Z. Show that the
following property holds for R if and only if n = 1: Every submodule of a projective
R-module is itself projective.

[[ Solution: The R-module M = R contains a submodule N isomorphic to Z/pZ (for
instance using Cauchy’s theorem in group theory). Suppose that R has the mentioned
property, there is some ¢ > 0 such that R* = N @ Q, where @ is a submodule of R’. But
then n must be equal to 1, since N is not a direct summand of Z/p"Z for n > 1.

Conversely R = Z/pZ is a field, hence all R-modules are free, so R has the desired property.||
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Problem 4 (3464646 points) (Cyclotomic and cyclic extensions)

For a positive integer n, let ®,(z) € Q[z] be the n-th cyclotomic polynomial over Q and let
Co = ¥/ ¢ C.

(a) Write down ®@,,(z) € Q[z] for n =7 and n = 17.
(b) For each n € {7,17} prove that

(i) there exists a,, € Q and b, € Q((,) \ Q such that b2 = a,;
(i) if a, € Q, V), € Q(¢y) \ Q satisfy b2 = a!,, then a/, = M\a,, for some \ € Q.

(c) Prove that there exists f(x) € Q[x] such that f(cos(2w/17)) = by, but there exists no
g(x) € Qx] such that g(cos(27w/7)) = by.

(d) Give an example of a cyclic extension of Q((;) of degree 7 and an example of a cyclic
extension of Q((y7) of degree 17.

Solution:

(a) Fogﬁa prime number p, we have ®,(z) = 2Pt 1 So Bp(x) = Y00 4t Byr(x) =
Do

(b) From lectures, Q((,)/Q is a Galois extension with Galois group isomorphic to (Z/nZ)*.
When n is a prime number p, (Z/pZ)* = Z/(p — 1)Z, which is a cyclic group of even order
p— 1. Thus Z/(p — 1)Z has a unique subgroup of order (p — 1)/2, giving, by the Galois
correspondence, a unique subfield K of Q((,) of degree 2 = (p —1)/((p — 1)/2) over Q.
From lectures, any quadratic extension of Q of degree 2 is of the form Q(y/a) for some
a € Q\ Q2 Suppose Va' € Q(v/a) = K (d’ € Q, not a square) and let o be the non trivial
element of Gal(K/Q), so o(y/a) = —/a. Then o(v/a/)? = @ and thus, since vVa' ¢ Q,
o(va') = —V/d'. Thus y/a/a' € Q.

(c) Since cos(27/n) = %, we have Q(cos(2m/n)) C Q((,). In particular cos(27/n) is
algebraic, so Q(cos(2mw/n)) = Q[cos(2mw/n)]. The problem is then equivalent to showing
that Q(b7) ¢ Q(cos(27w/7)) and Q(by7) C Q(cos(27/17)). For this we use the Galois
correspondence. For any n > 3, we have [Q((,) : Q(cos(27m/n))] < 2 since ¢, is a root of
(x—C)(z—¢ ") =2 — (¢ + ¢z +1 € Q(cos(2m/n)). But also cos(2mn) is fixed by the
non-trivial —1 € Gal(Q(¢,)/Q), so the degree is 2.

Thus when n = 7, by the tower law, we have [Q(cos(27/n) : Q] = 3 and hence (again by
the tower law) the degree two Q(b7) cannot be contained in Q(cos(27/n)).

Whenn = 17, (Z/nZ)* = 7,/2*7 and, with this identification, the subgroup fixing Q(cos(27/n))

is thus generated by 8 mod 2%, which is contained in every non-trivial subgroup and in par-
ticular in the subgroup corresponding to Q(b7).

(d) Let K be a field of characteristic coprime with n and containing a primitive n-th root of
1. From lectures, for every a € K which is not a d-th power in K for any d > 1, d | n, the
splitting field of ™ — a is a cyclic extension of K of degree n.

The polynomials 27 — 2 € Q[z] and 2'" — 2 € Q[x] are irreducible by Eisenstein’s criterion
with 2. Let n € {7,17}. Thus, by the tower law, if Q((,) contains an n-th root of 2, we
have n | [Q(¢,) : Q] = n — 1. So: splitting field of ™ — 2 over Q((,,) works.
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Problem 5 (64646-+6 points) (Galois group of the splitting field of a cubic)

Let K be a field of characteristic different from 2 and 3 and consider a separable polynomial
f(z) =2 + az® + bz + c € K[z].
Let L be the splitting field of f over K and let G = Gal(L/K) .
(a) Show that G is isomorphic to a subgroup of Ss.
(b) Assume now that f(x) is irreducible in KJz|; deduce that G = As or G = S3. Let
aq, g, a3 € L be the roots of f(z). Define
A = (a; — ap)* (a1 — a3)* (a2 — az)?.
(i) Prove that A € K.
(ii) Prove that A is a square in K if and only if G = A;.

(c¢) Let K = F5. Show that for every irreducible f(z) € K[z] as above, A is a square.

(d) Let K be the splitting field of z* —5 € Q[z] and let L be the splitting field of f(z) =
x3 — 7 € K[z] over K. Prove that G & Aj.
Solution:

(a) If c € G and a € L is a root of f(x) then 0 = o(f(«)) = f(o()) so o(«) is a root of f(z).
Since o is bijective, we conclude that it permutes the roots of f(x). Label the roots of f(z)
by aq, as, a3. Consider then the map G — S3, mapping o to (kll A 133) if o(a;) = ag,. This
is a group homomorphism (check) and injective, since L = K(aq, ag, a3).

(b) If awis a root of f(x) and f(x) is irreducible, then [K(«) : K] = 3. Since #G = [L : K], by
the tower law we conclude that 3 | #G and thus follows from (a).

(i) A is fixed by (12), (123), which generate Ss.
(i) Let 6 = (o — ag)(aq — az)(ag — ag). It is fixed by (123), so if G = Aj, then § € K
and hence A is a square. Conversely, if G = S3, § € K since not fixed by (12).

(c) The Galois group of a finite extension of finite fields is cyclic (was proved in HW). Since
Sy is not cyclic, in (b) must have Aj.

(d) The polynomial g(x) = z* — 5 € Qlx] is irreducible by Eisenstein’s criterion with 5. So
Gal(K/Q) is either Sy or As. Now, the roots of g(x) are 3/2,(3/2,(?v/2 where € is a
primitive 3-rd root of unity. Thus ( € K and so 2 = # Gal(Q(¢)/Q) | # Gal(K/Q) and
hence Gal(K/Q) = S5. Thus for f(z) we have

5=T(1- 01—~ ek
and hence G = Aj, provided that we show that f(z) is irreducible over K. Suppose f(z)
is reducible over Kz]. Since deg f = 3, then f(x) has a root in K.

Now consider o € Gal(K/Q) such that o(3/5) = ¢v/5, o(¢V/5) = ¢2v/5. So ¢ = (¢V/5)/V/5
is fixed by ¢ and since ¢ has order 3 and Q(¢)/Q degree 2, L = Q(¢)'?). If ¥/7 € K, then
o(¥/7)? = 7. So we have one of the following

e o(v/7) = v/7. Then v/7 € Q((), so 3 | 2, contradiction

e o(/7) = (/7. Then ¢/7/5 € Q(¢), so 3| 2, contradiction

o o(/7) = (?¥/7. Then /7/25 € Q(C), so 3 | 2, contradiction
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End of test (90 points)
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