
Final Exam — Advanced Algebraic Structures (WBMA16000)

Wednesday January 29, 2019, 15:00h–18.00h

University of Groningen

Instructions

1. Write your name and student number on every page you hand in.

2. All answers need to be accompanied with an explanation or a calculation.

3. You may use results obtained in homework or tutorial problems.

4. In total you can obtain at most 90 points on this exam. Your final grade is (P + 10)/10,
where P ≤ 90 is the number of points you obtain on the exam.

Problem 1 (5+5 points) (Module Homomorphisms)

(a) Show that HomZ(Q,Z) is trivial.

[[Solution. Let f : Q→ Z be a Z-module homomorphism. Let x ∈ Q\{0}. Then, for every
a ∈ Z \ {0}, we have

a · f(x/a) = f(x) ∈ Z,

and since f(x/a) ∈ Z, we find that f(x) is divisible by every integer, hence must be 0.]]

(b) Let R be a commutative ring and let n ≥ 1 be an integer. Show that HomR(Rn, R) ∼= Rn.

[[ Solution: One way to get started is to first define a map ϕx : Rn → R for every x =
(x1, . . . , xn) ∈ Rn, which sends y = (y1, . . . , yn) ∈ Rn to ϕx(y) =

∑n
i=1 xiyi.) Show that

(i) ϕx is linear

(ii) Ψ(x) = ϕx is linear

(iii) Ψ is injective

(iv) Ψ is surjective.

One can also show that f ∈ HomR(Rn, R) is given by its effect on a fixed basis of Rn. ]]

Problem 2 (5+4+6+5 points) (Tensor products)

(a) Find a nontrivial Z-module M such that M ⊗Z M ∼= M and M 6∼= Z. [[Solution: For
M = Z/nZ, with n > 1, we have M ⊗Z M ∼= Z/dZ, where d = gcd(n, n) = n.]]

(b) Let R be a commutative ring, let I be an ideal of R and let M be an R-module. Then

IM =

{
n∑
i=1

aimi : n ≥ 0, ai ∈ I,mi ∈M for all i

}
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is a submodule of M (you do not need to prove this). Show that there is a unique R-
module-homomorphism

f : (R/I)⊗RM →M/IM

such that f((r + I)⊗m) = (rm) + IM for all r + I ∈ R/I and m ∈M .

[[ Solution: This follows immediately from the universal property of the tensor product. ]]

(c) Show that f in (b) is an isomorphism. (Hint: Find the inverse function.)

[[ Solution: The inverse map is

g(m+ IM) = (1 + I)⊗m

. Need to show

(a) g is well-defined

(b) f ◦ g = id

(c) g ◦ f = id

]]

(d) Find an example of a commutative ring R, an ideal I of R and an R-module M such that
I ⊗RM 6∼= IM .

[[Solution: Take R = Z, I = nZ,M = Z/nZ, where n ≥ 2. Then IM = {0}, but
I ⊗RM ∼= M .

Problem 3 (5+4+6 points) (Projective modules)

(a) Let n > 1 be an integer. Show that the Z-module Z/nZ is not projective.

[[Solution: First method: A Z-module M is projective iff there is a free Z-module F and
a Z-module Q such that F ∼= M ⊕ P . But Z/nZ has nontrivial elements of finite order,
whereas a free module does not. Second method: Let π : Z → Z/nZ be the canonical
surjection and let h : Z/nZ→ Z/nZ be the identity. If Z/nZ were projective, there would
be a homomorphism h̃ : Z/nZ→ Z such that h = π◦h̃. But all homomorphisms Z/nZ→ Z
are trivial.

(b) Deduce that a finitely generated Z-module is projective if and only if it’s free.

[[ Solution: Free ⇒ projective was shown in the lectures. By the structure theorem for
finitely generated abelian groups, such a Z-module M is not free if and only if M ∼=
N ⊕ Z/nZ for some submodule N of M and n > 1. Since Z/nZ is not projective, neither
is M , using the characterization in the first method above.]]

(c) Let p be a prime, let n ≥ 1 be an integer and let R be the ring Z/pnZ. Show that the
following property holds for R if and only if n = 1: Every submodule of a projective
R-module is itself projective.

[[ Solution: The R-module M = R contains a submodule N isomorphic to Z/pZ (for
instance using Cauchy’s theorem in group theory). Suppose that R has the mentioned
property, there is some ` > 0 such that R` ∼= N ⊕ Q, where Q is a submodule of R`. But
then n must be equal to 1, since N is not a direct summand of Z/pnZ for n > 1.

ConverselyR = Z/pZ is a field, hence allR-modules are free, soR has the desired property.]]
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Problem 4 (3+6+6+6 points) (Cyclotomic and cyclic extensions)

For a positive integer n, let Φn(x) ∈ Q[x] be the n-th cyclotomic polynomial over Q and let
ζn = e2πi/n ∈ C.

(a) Write down Φn(x) ∈ Q[x] for n = 7 and n = 17.

(b) For each n ∈ {7, 17} prove that

(i) there exists an ∈ Q and bn ∈ Q(ζn) \Q such that b2n = an;

(ii) if a′n ∈ Q, b′n ∈ Q(ζn) \Q satisfy b′2n = a′n, then a′n = λ2an for some λ ∈ Q.

(c) Prove that there exists f(x) ∈ Q[x] such that f(cos(2π/17)) = b17, but there exists no
g(x) ∈ Q[x] such that g(cos(2π/7)) = b7.

(d) Give an example of a cyclic extension of Q(ζ7) of degree 7 and an example of a cyclic
extension of Q(ζ17) of degree 17.

Solution:

(a) For a prime number p, we have Φp(x) = xp−1 + · · · + 1. So Φ7(x) =
∑6

i=0 x
i, Φ17(x) =∑16

i=0 x
i.

(b) From lectures, Q(ζn)/Q is a Galois extension with Galois group isomorphic to (Z/nZ)∗.
When n is a prime number p, (Z/pZ)∗ ∼= Z/(p− 1)Z, which is a cyclic group of even order
p − 1. Thus Z/(p − 1)Z has a unique subgroup of order (p − 1)/2, giving, by the Galois
correspondence, a unique subfield K of Q(ζp) of degree 2 = (p − 1)/((p − 1)/2) over Q.
From lectures, any quadratic extension of Q of degree 2 is of the form Q(

√
a) for some

a ∈ Q \Q2. Suppose
√
a′ ∈ Q(

√
a) = K (a′ ∈ Q, not a square) and let σ be the non trivial

element of Gal(K/Q), so σ(
√
a) = −

√
a. Then σ(

√
a′)2 = a′ and thus, since

√
a′ 6∈ Q,

σ(
√
a′) = −

√
a′. Thus

√
a/a′ ∈ Q.

(c) Since cos(2π/n) = ζn+ζ
−1
n

2
, we have Q(cos(2π/n)) ⊂ Q(ζn). In particular cos(2π/n) is

algebraic, so Q(cos(2π/n)) = Q[cos(2π/n)]. The problem is then equivalent to showing
that Q(b7) 6⊂ Q(cos(2π/7)) and Q(b17) ⊂ Q(cos(2π/17)). For this we use the Galois
correspondence. For any n ≥ 3, we have [Q(ζn) : Q(cos(2π/n))] ≤ 2 since ζn is a root of
(x− ζn)(x− ζ−1n ) = x2− (ζn + ζ−1n )x+ 1 ∈ Q(cos(2π/n)). But also cos(2πn) is fixed by the
non-trivial −1 ∈ Gal(Q(ζn)/Q), so the degree is 2.

Thus when n = 7, by the tower law, we have [Q(cos(2π/n) : Q] = 3 and hence (again by
the tower law) the degree two Q(b7) cannot be contained in Q(cos(2π/n)).

When n = 17, (Z/nZ)∗ ∼= Z/24Z and, with this identification, the subgroup fixing Q(cos(2π/n))
is thus generated by 8 mod 24, which is contained in every non-trivial subgroup and in par-
ticular in the subgroup corresponding to Q(b7).

(d) Let K be a field of characteristic coprime with n and containing a primitive n-th root of
1. From lectures, for every a ∈ K which is not a d-th power in K for any d > 1, d | n, the
splitting field of xn − a is a cyclic extension of K of degree n.

The polynomials x7 − 2 ∈ Q[x] and x17 − 2 ∈ Q[x] are irreducible by Eisenstein’s criterion
with 2. Let n ∈ {7, 17}. Thus, by the tower law, if Q(ζn) contains an n-th root of 2, we
have n | [Q(ζn) : Q] = n− 1. So: splitting field of xn − 2 over Q(ζn) works.
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Problem 5 (6+6+6+6 points) (Galois group of the splitting field of a cubic)

Let K be a field of characteristic different from 2 and 3 and consider a separable polynomial

f(x) = x3 + ax2 + bx+ c ∈ K[x].

Let L be the splitting field of f over K and let G = Gal(L/K) .

(a) Show that G is isomorphic to a subgroup of S3.

(b) Assume now that f(x) is irreducible in K[x]; deduce that G ∼= A3 or G ∼= S3. Let
α1, α2, α3 ∈ L be the roots of f(x). Define

∆ = (α1 − α2)
2(α1 − α3)

2(α2 − α3)
2.

(i) Prove that ∆ ∈ K.

(ii) Prove that ∆ is a square in K if and only if G ∼= A3.

(c) Let K = F5. Show that for every irreducible f(x) ∈ K[x] as above, ∆ is a square.

(d) Let K be the splitting field of x3 − 5 ∈ Q[x] and let L be the splitting field of f(x) =
x3 − 7 ∈ K[x] over K. Prove that G ∼= A3.

Solution:

(a) If σ ∈ G and α ∈ L is a root of f(x) then 0 = σ(f(α)) = f(σ(α)) so σ(α) is a root of f(x).
Since σ is bijective, we conclude that it permutes the roots of f(x). Label the roots of f(x)
by α1, α2, α3. Consider then the map G→ S3, mapping σ to

(
1 2 3
k1 k2 k3

)
if σ(αi) = αki . This

is a group homomorphism (check) and injective, since L = K(α1, α2, α3).

(b) If α is a root of f(x) and f(x) is irreducible, then [K(α) : K] = 3. Since #G = [L : K], by
the tower law we conclude that 3 | #G and thus follows from (a).

(i) ∆ is fixed by (12), (123), which generate S3.

(ii) Let δ = (α1 − α2)(α1 − α3)(α2 − α3). It is fixed by (123), so if G ∼= A3, then δ ∈ K
and hence ∆ is a square. Conversely, if G ∼= S3, δ 6∈ K since not fixed by (12).

(c) The Galois group of a finite extension of finite fields is cyclic (was proved in HW). Since
S3 is not cyclic, in (b) must have A3.

(d) The polynomial g(x) = x3 − 5 ∈ Q[x] is irreducible by Eisenstein’s criterion with 5. So
Gal(K/Q) is either S3 or A3. Now, the roots of g(x) are 3

√
2, ζ 3
√

2, ζ2 3
√

2 where ζ is a
primitive 3-rd root of unity. Thus ζ ∈ K and so 2 = # Gal(Q(ζ)/Q) | # Gal(K/Q) and
hence Gal(K/Q) ∼= S3. Thus for f(x) we have

δ = 7(1− ζ)(1− ζ2)(ζ − ζ2) ∈ K
and hence G ∼= A3, provided that we show that f(x) is irreducible over K. Suppose f(x)
is reducible over K[x]. Since deg f = 3, then f(x) has a root in K.

Now consider σ ∈ Gal(K/Q) such that σ( 3
√

5) = ζ 3
√

5, σ(ζ 3
√

5) = ζ2 3
√

5. So ζ = (ζ 3
√

5)/ 3
√

5
is fixed by σ and since σ has order 3 and Q(ζ)/Q degree 2, L = Q(ζ)〈σ〉. If 3

√
7 ∈ K, then

σ( 3
√

7)3 = 7. So we have one of the following

• σ( 3
√

7) = 3
√

7. Then 3
√

7 ∈ Q(ζ), so 3 | 2, contradiction

• σ( 3
√

7) = ζ 3
√

7. Then 3
√

7/5 ∈ Q(ζ), so 3 | 2, contradiction

• σ( 3
√

7) = ζ2 3
√

7. Then 3
√

7/25 ∈ Q(ζ), so 3 | 2, contradiction
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End of test (90 points)
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