Final Exam - Advanced Algebraic Structures (WBMA16000)
 Wednesday January 29, 2019, 15:00h-18.00h
 University of Groningen

Instructions

1. Write your name and student number on every page you hand in.
2. All answers need to be accompanied with an explanation or a calculation.
3. You may use results obtained in homework or tutorial problems.
4. In total you can obtain at most 90 points on this exam. Your final grade is $(P+10) / 10$, where $P \leq 90$ is the number of points you obtain on the exam.

Problem 1 ($5+5$ points) (Module Homomorphisms)

(a) Show that $\operatorname{Hom}_{\mathbb{Z}}(\mathbb{Q}, \mathbb{Z})$ is trivial.
[[Solution. Let $f: \mathbb{Q} \rightarrow \mathbb{Z}$ be a \mathbb{Z}-module homomorphism. Let $x \in \mathbb{Q} \backslash\{0\}$. Then, for every $a \in \mathbb{Z} \backslash\{0\}$, we have

$$
a \cdot f(x / a)=f(x) \in \mathbb{Z}
$$

and since $f(x / a) \in \mathbb{Z}$, we find that $f(x)$ is divisible by every integer, hence must be 0.]]
(b) Let R be a commutative ring and let $n \geq 1$ be an integer. Show that $\operatorname{Hom}_{R}\left(R^{n}, R\right) \cong R^{n}$.
[[Solution: One way to get started is to first define a map $\varphi_{x}: R^{n} \rightarrow R$ for every $x=$ $\left(x_{1}, \ldots, x_{n}\right) \in R^{n}$, which sends $y=\left(y_{1}, \ldots, y_{n}\right) \in R^{n}$ to $\varphi_{x}(y)=\sum_{i=1}^{n} x_{i} y_{i}$.) Show that
(i) φ_{x} is linear
(ii) $\Psi(x)=\varphi_{x}$ is linear
(iii) Ψ is injective
(iv) Ψ is surjective.

One can also show that $f \in \operatorname{Hom}_{R}\left(R^{n}, R\right)$ is given by its effect on a fixed basis of R^{n}.]]

Problem 2 ($5+4+6+5$ points) (Tensor products)

(a) Find a nontrivial \mathbb{Z}-module M such that $M \otimes_{\mathbb{Z}} M \cong M$ and $M \not \approx \mathbb{Z}$. [[Solution: For $M=\mathbb{Z} / n \mathbb{Z}$, with $n>1$, we have $M \otimes_{\mathbb{Z}} M \cong \mathbb{Z} / d \mathbb{Z}$, where $\left.\left.d=\operatorname{gcd}(n, n)=n.\right]\right]$
(b) Let R be a commutative ring, let I be an ideal of R and let M be an R-module. Then

$$
I M=\left\{\sum_{i=1}^{n} a_{i} m_{i}: n \geq 0, a_{i} \in I, m_{i} \in M \text { for all } i\right\}
$$

is a submodule of M (you do not need to prove this). Show that there is a unique R -module-homomorphism

$$
f:(R / I) \otimes_{R} M \rightarrow M / I M
$$

such that $f((r+I) \otimes m)=(r m)+I M$ for all $r+I \in R / I$ and $m \in M$.
[[Solution: This follows immediately from the universal property of the tensor product.]]
(c) Show that f in (b) is an isomorphism. (Hint: Find the inverse function.)
[[Solution: The inverse map is

$$
g(m+I M)=(1+I) \otimes m
$$

. Need to show
(a) g is well-defined
(b) $f \circ g=\mathrm{id}$
(c) $g \circ f=\mathrm{id}$
]]
(d) Find an example of a commutative ring R, an ideal I of R and an R-module M such that $I \otimes_{R} M \neq I M$.
$[[$ Solution: Take $R=\mathbb{Z}, I=n \mathbb{Z}, M=\mathbb{Z} / n \mathbb{Z}$, where $n \geq 2$. Then $I M=\{0\}$, but $I \otimes_{R} M \cong M$.

Problem 3 (5+4+6 points) (Projective modules)

(a) Let $n>1$ be an integer. Show that the \mathbb{Z}-module $\mathbb{Z} / n \mathbb{Z}$ is not projective.
[[Solution: First method: A \mathbb{Z}-module M is projective iff there is a free \mathbb{Z}-module F and a \mathbb{Z}-module Q such that $F \cong M \oplus P$. But $\mathbb{Z} / n \mathbb{Z}$ has nontrivial elements of finite order, whereas a free module does not. Second method: Let $\pi: \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ be the canonical surjection and let $h: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z} / n \mathbb{Z}$ be the identity. If $\mathbb{Z} / n \mathbb{Z}$ were projective, there would be a homomorphism $\tilde{h}: \mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z}$ such that $h=\pi \circ \tilde{h}$. But all homomorphisms $\mathbb{Z} / n \mathbb{Z} \rightarrow \mathbb{Z}$ are trivial.
(b) Deduce that a finitely generated \mathbb{Z}-module is projective if and only if it's free.
[[Solution: Free \Rightarrow projective was shown in the lectures. By the structure theorem for finitely generated abelian groups, such a \mathbb{Z}-module M is not free if and only if $M \cong$ $N \oplus \mathbb{Z} / n \mathbb{Z}$ for some submodule N of M and $n>1$. Since $\mathbb{Z} / n \mathbb{Z}$ is not projective, neither is M, using the characterization in the first method above.]]
(c) Let p be a prime, let $n \geq 1$ be an integer and let R be the ring $\mathbb{Z} / p^{n} \mathbb{Z}$. Show that the following property holds for R if and only if $n=1$: Every submodule of a projective R-module is itself projective.
[[Solution: The R-module $M=R$ contains a submodule N isomorphic to $\mathbb{Z} / p \mathbb{Z}$ (for instance using Cauchy's theorem in group theory). Suppose that R has the mentioned property, there is some $\ell>0$ such that $R^{\ell} \cong N \oplus Q$, where Q is a submodule of R^{ℓ}. But then n must be equal to 1 , since N is not a direct summand of $\mathbb{Z} / p^{n} \mathbb{Z}$ for $n>1$.
Conversely $R=\mathbb{Z} / p \mathbb{Z}$ is a field, hence all R-modules are free, so R has the desired property.]]

Problem 4 ($3+6+6+6$ points) (Cyclotomic and cyclic extensions)

For a positive integer n, let $\Phi_{n}(x) \in \mathbb{Q}[x]$ be the n-th cyclotomic polynomial over \mathbb{Q} and let $\zeta_{n}=e^{2 \pi i / n} \in \mathbb{C}$.
(a) Write down $\Phi_{n}(x) \in \mathbb{Q}[x]$ for $n=7$ and $n=17$.
(b) For each $n \in\{7,17\}$ prove that
(i) there exists $a_{n} \in \mathbb{Q}$ and $b_{n} \in \mathbb{Q}\left(\zeta_{n}\right) \backslash \mathbb{Q}$ such that $b_{n}^{2}=a_{n}$;
(ii) if $a_{n}^{\prime} \in \mathbb{Q}, b_{n}^{\prime} \in \mathbb{Q}\left(\zeta_{n}\right) \backslash \mathbb{Q}$ satisfy $b_{n}^{\prime 2}=a_{n}^{\prime}$, then $a_{n}^{\prime}=\lambda^{2} a_{n}$ for some $\lambda \in \mathbb{Q}$.
(c) Prove that there exists $f(x) \in \mathbb{Q}[x]$ such that $f(\cos (2 \pi / 17))=b_{17}$, but there exists no $g(x) \in \mathbb{Q}[x]$ such that $g(\cos (2 \pi / 7))=b_{7}$.
(d) Give an example of a cyclic extension of $\mathbb{Q}\left(\zeta_{7}\right)$ of degree 7 and an example of a cyclic extension of $\mathbb{Q}\left(\zeta_{17}\right)$ of degree 17 .

Solution:
(a) For a prime number p, we have $\Phi_{p}(x)=x^{p-1}+\cdots+1$. So $\Phi_{7}(x)=\sum_{i=0}^{6} x^{i}, \Phi_{17}(x)=$ $\sum_{i=0}^{16} x^{i}$.
(b) From lectures, $\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}$ is a Galois extension with Galois group isomorphic to $(\mathbb{Z} / n \mathbb{Z})^{*}$. When n is a prime number $p,(\mathbb{Z} / p \mathbb{Z})^{*} \cong \mathbb{Z} /(p-1) \mathbb{Z}$, which is a cyclic group of even order $p-1$. Thus $\mathbb{Z} /(p-1) \mathbb{Z}$ has a unique subgroup of order $(p-1) / 2$, giving, by the Galois correspondence, a unique subfield K of $\mathbb{Q}\left(\zeta_{p}\right)$ of degree $2=(p-1) /((p-1) / 2)$ over \mathbb{Q}. From lectures, any quadratic extension of \mathbb{Q} of degree 2 is of the form $\mathbb{Q}(\sqrt{a})$ for some $a \in \mathbb{Q} \backslash \mathbb{Q}^{2}$. Suppose $\sqrt{a^{\prime}} \in \mathbb{Q}(\sqrt{a})=K\left(a^{\prime} \in \mathbb{Q}\right.$, not a square) and let σ be the non trivial element of $\operatorname{Gal}(K / \mathbb{Q})$, so $\sigma(\sqrt{a})=-\sqrt{a}$. Then $\sigma\left(\sqrt{a^{\prime}}\right)^{2}=a^{\prime}$ and thus, since $\sqrt{a^{\prime}} \notin \mathbb{Q}$, $\sigma\left(\sqrt{a^{\prime}}\right)=-\sqrt{a^{\prime}}$. Thus $\sqrt{a / a^{\prime}} \in \mathbb{Q}$.
(c) Since $\cos (2 \pi / n)=\frac{\zeta_{n}+\zeta_{n}^{-1}}{2}$, we have $\mathbb{Q}(\cos (2 \pi / n)) \subset \mathbb{Q}\left(\zeta_{n}\right)$. In particular $\cos (2 \pi / n)$ is algebraic, so $\mathbb{Q}(\cos (2 \pi / n))=\mathbb{Q}[\cos (2 \pi / n)]$. The problem is then equivalent to showing that $\mathbb{Q}\left(b_{7}\right) \not \subset \mathbb{Q}(\cos (2 \pi / 7))$ and $\mathbb{Q}\left(b_{17}\right) \subset \mathbb{Q}(\cos (2 \pi / 17))$. For this we use the Galois correspondence. For any $n \geq 3$, we have $\left[\mathbb{Q}\left(\zeta_{n}\right): \mathbb{Q}(\cos (2 \pi / n))\right] \leq 2$ since ζ_{n} is a root of $\left(x-\zeta_{n}\right)\left(x-\zeta_{n}^{-1}\right)=x^{2}-\left(\zeta_{n}+\zeta_{n}^{-1}\right) x+1 \in \mathbb{Q}(\cos (2 \pi / n))$. But also $\cos (2 \pi n)$ is fixed by the non-trivial $-1 \in \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right)$, so the degree is 2 .
Thus when $n=7$, by the tower law, we have $[\mathbb{Q}(\cos (2 \pi / n): \mathbb{Q}]=3$ and hence (again by the tower law) the degree two $\mathbb{Q}\left(b_{7}\right)$ cannot be contained in $\mathbb{Q}(\cos (2 \pi / n))$.
When $n=17,(\mathbb{Z} / n \mathbb{Z})^{*} \cong \mathbb{Z} / 2^{4} \mathbb{Z}$ and, with this identification, the subgroup fixing $\mathbb{Q}(\cos (2 \pi / n))$ is thus generated by $8 \bmod 2^{4}$, which is contained in every non-trivial subgroup and in particular in the subgroup corresponding to $\mathbb{Q}\left(b_{7}\right)$.
(d) Let K be a field of characteristic coprime with n and containing a primitive n-th root of 1. From lectures, for every $a \in K$ which is not a d-th power in K for any $d>1, d \mid n$, the splitting field of $x^{n}-a$ is a cyclic extension of K of degree n.
The polynomials $x^{7}-2 \in \mathbb{Q}[x]$ and $x^{17}-2 \in \mathbb{Q}[x]$ are irreducible by Eisenstein's criterion with 2 . Let $n \in\{7,17\}$. Thus, by the tower law, if $\mathbb{Q}\left(\zeta_{n}\right)$ contains an n-th root of 2 , we have $n \mid\left[\mathbb{Q}\left(\zeta_{n}\right): \mathbb{Q}\right]=n-1$. So: splitting field of $x^{n}-2$ over $\mathbb{Q}\left(\zeta_{n}\right)$ works.

Problem 5 ($6+6+6+6$ points) (Galois group of the splitting field of a cubic)

Let K be a field of characteristic different from 2 and 3 and consider a separable polynomial

$$
f(x)=x^{3}+a x^{2}+b x+c \in K[x] .
$$

Let L be the splitting field of f over K and let $G=\operatorname{Gal}(L / K)$.
(a) Show that G is isomorphic to a subgroup of S_{3}.
(b) Assume now that $f(x)$ is irreducible in $K[x]$; deduce that $G \cong A_{3}$ or $G \cong S_{3}$. Let $\alpha_{1}, \alpha_{2}, \alpha_{3} \in L$ be the roots of $f(x)$. Define

$$
\Delta=\left(\alpha_{1}-\alpha_{2}\right)^{2}\left(\alpha_{1}-\alpha_{3}\right)^{2}\left(\alpha_{2}-\alpha_{3}\right)^{2}
$$

(i) Prove that $\Delta \in K$.
(ii) Prove that Δ is a square in K if and only if $G \cong A_{3}$.
(c) Let $K=\mathbb{F}_{5}$. Show that for every irreducible $f(x) \in K[x]$ as above, Δ is a square.
(d) Let K be the splitting field of $x^{3}-5 \in \mathbb{Q}[x]$ and let L be the splitting field of $f(x)=$ $x^{3}-7 \in K[x]$ over K. Prove that $G \cong A_{3}$.
Solution:
(a) If $\sigma \in G$ and $\alpha \in L$ is a root of $f(x)$ then $0=\sigma(f(\alpha))=f(\sigma(\alpha))$ so $\sigma(\alpha)$ is a root of $f(x)$. Since σ is bijective, we conclude that it permutes the roots of $f(x)$. Label the roots of $f(x)$ by $\alpha_{1}, \alpha_{2}, \alpha_{3}$. Consider then the map $G \rightarrow S_{3}$, mapping σ to $\left(\begin{array}{ccc}1 & 2 & 3 \\ k_{1} & k_{2} & k_{3}\end{array}\right)$ if $\sigma\left(\alpha_{i}\right)=\alpha_{k_{i}}$. This is a group homomorphism (check) and injective, since $L=K\left(\alpha_{1}, \alpha_{2}, \alpha_{3}\right)$.
(b) If α is a root of $f(x)$ and $f(x)$ is irreducible, then $[K(\alpha): K]=3$. Since $\# G=[L: K]$, by the tower law we conclude that $3 \mid \# G$ and thus follows from (a).
(i) Δ is fixed by (12), (123), which generate S_{3}.
(ii) Let $\delta=\left(\alpha_{1}-\alpha_{2}\right)\left(\alpha_{1}-\alpha_{3}\right)\left(\alpha_{2}-\alpha_{3}\right)$. It is fixed by (123), so if $G \cong A_{3}$, then $\delta \in K$ and hence Δ is a square. Conversely, if $G \cong S_{3}, \delta \notin K$ since not fixed by (12).
(c) The Galois group of a finite extension of finite fields is cyclic (was proved in HW). Since S_{3} is not cyclic, in (b) must have A_{3}.
(d) The polynomial $g(x)=x^{3}-5 \in \mathbb{Q}[x]$ is irreducible by Eisenstein's criterion with 5 . So $\operatorname{Gal}(K / \mathbb{Q})$ is either S_{3} or A_{3}. Now, the roots of $g(x)$ are $\sqrt[3]{2}, \zeta \sqrt[3]{2}, \zeta^{2} \sqrt[3]{2}$ where ζ is a primitive 3-rd root of unity. Thus $\zeta \in K$ and so $2=\# \operatorname{Gal}(\mathbb{Q}(\zeta) / \mathbb{Q}) \mid \# \operatorname{Gal}(K / \mathbb{Q})$ and hence $\operatorname{Gal}(K / \mathbb{Q}) \cong S_{3}$. Thus for $f(x)$ we have

$$
\delta=7(1-\zeta)\left(1-\zeta^{2}\right)\left(\zeta-\zeta^{2}\right) \in K
$$

and hence $G \cong A_{3}$, provided that we show that $f(x)$ is irreducible over K. Suppose $f(x)$ is reducible over $K[x]$. Since $\operatorname{deg} f=3$, then $f(x)$ has a root in K.
Now consider $\sigma \in \operatorname{Gal}(K / \mathbb{Q})$ such that $\sigma(\sqrt[3]{5})=\zeta \sqrt[3]{5}, \sigma(\zeta \sqrt[3]{5})=\zeta^{2} \sqrt[3]{5}$. So $\zeta=(\zeta \sqrt[3]{5}) / \sqrt[3]{5}$ is fixed by σ and since σ has order 3 and $\mathbb{Q}(\zeta) / \mathbb{Q}$ degree $2, L=\mathbb{Q}(\zeta)^{\langle\sigma\rangle}$. If $\sqrt[3]{7} \in K$, then $\sigma(\sqrt[3]{7})^{3}=7$. So we have one of the following

- $\sigma(\sqrt[3]{7})=\sqrt[3]{7}$. Then $\sqrt[3]{7} \in \mathbb{Q}(\zeta)$, so $3 \mid 2$, contradiction
- $\sigma(\sqrt[3]{7})=\zeta \sqrt[3]{7}$. Then $\sqrt[3]{7 / 5} \in \mathbb{Q}(\zeta)$, so $3 \mid 2$, contradiction
- $\sigma(\sqrt[3]{7})=\zeta^{2} \sqrt[3]{7}$. Then $\sqrt[3]{7 / 25} \in \mathbb{Q}(\zeta)$, so $3 \mid 2$, contradiction

End of test (90 points)

